Implementing a Forth

 Forth Background.

* Why a Forth?

» Stack Machines.

* Implementation Concepts.

* Execution & Threading.

» Stacks Operations & Postfix.
* epop Overview & Examples.
* Resources.

Jack.Pope@ieee.org
* Investment data science infrastructure on UNIX,
since ancient times.
* Chairman, Twin Cities IEEE Computer Socliety.

 Computer Science / Data Science, Minnesota
State Colleges & Universities.

* Developer of epop, a Forth inspired
programming environment.

Disclaimer

Programming Languages may have standards
(IEEE POSIX, ANSI Forth, ANSI C, ...)

Compliler implementations have principles.
(No rigid rules.)

Forth History

Developed by Charles Moore in the late 1960'’s.
* A student of John McCarthy at MIT in the 1950s.

* Possibly influenced by McCarthy’s LISP programming
ideas.

 Forth was “functional” long before there was
Functional Programming.

wWhy Forth?

* The efficiencies of a stack machine.
* Can be self-hosted and be its own OS.
* A compiler-implementation paradigm.
* More than a Programming Language.

Why Forth, cont’

* A problem solving language:
 Compact / concise expressions.

 Self-documenting syntax.

* Factoring words:
* |dentify general problem / solution.
* |dentify most basic component words.
* Inductively compose solution of component words.

Host vs Guest System

* Hosted: Host language defines Forth dictionary.

 Self-hosted: Guest system language defines
Forth dictionary (minimal machine level /
assembly functions).

Minimal Host Components

* Push function: for data stack
* Pop function: for data stack
* Data Stack

* Program Stack

Stack Machines

« Stack: Dedicated registers or dedicated area of memory.
* Stack data is Last-In-First-Out (LIFO).
* Program Stack: instruction sequence.
* Dictionary: A parallel in-memory structure/table.
» Stack Counter: element count; size-of.
« Stack Pointer (top of the Program Stack):
* Memory address of next instruction.
* May be indexed by Program Counter.
* Push data (to top of Data Stack).
* Pop data (from top of Data Stack).

* Return Stack:
* Addresses of functions that call other functions (return address) for continuing program sequence.
» And/or auxiliary data stack for the current operation.

Forth Execution

* Compile-time generation of host language
functions.

* Compile-time generation of guest language
functions. (Like Forth’s CREATE DOES> sequence)

* Run-time Virtual Machine: loop -> word parse /
tokenize -> stack(s) -> exec

The Virtual Machine Loop

Read text input -- via user interface or file i/o.

Interpret / parse -- one or two passes with look-ahead tokenizer.
Generate high level program (abstract word tree).

Recursively flatten tree to low level program stack.

Evaluate program stack.

Repeat

Indirect Threaded Code

* Portable: No predefined function addresses (not direct).
* More low-level jumps than direct threaded code.

* Replace words (abstract functions) with:
* Primitive addresses
* Intermediate opcode
* Intermediate abstract object (token or subroutine threading)

* Dispatch the replacements to program stack.

Word Dispatch: Vectored Execution

* Replace input vector of abstract words with by executable objects.

* Flatten abstract word tree into executable program stack (indirect threading).
» Use recursive descent operations with
* Switch statement (switch threading).

* Identify next word (opcode, address,...).
* [F condition is 1 “immediate” then exec.
* ELSE push word to program stack.

* Advance stack pointer/counter.
e Execute the program stack.

Stack Operations: Postfix

* Efficient for memory and CPU.

* No rules of precedence.
* No need of () parentheses, unlike infix notation.

* Linear processing from left-to-right; top-to-bottom.
* Think of assembly’s prefixed notation, in reverse.
*Ex: 21+ --> 3

Separate Stacks

X
+
Operator

__4__
2
3
1

Three Separate Stacks (before operations).

Copyright (C) Jack Pope 2023

Separate Stacks

+ 38
Operator Return

3
1
Operand

Three Separate Stacks (after one operation).

Copyright (C) Jack Pope 2023

Separate Stacks

A
8
Operator Return

Three Separate Stacks (after two operations).

Copyright (C) Jack Pope 2023

Combined Stacks

S
14

_:__
2
3
7

A Combined Stack (before & after one operation).

Copyright (C) Jack Pope 2023

epop overview

* Most operations are postfix and stack oriented.
* Program stack: Linear linked-list.
* Three data stacks: Circular linked-lists (for memory management).

» Data types: numeric, string, table and XT.
 Use tables for “big data.”
» XTs (execution tokens) can be treated as data.

* Run-time user defined words (in REPL).
* Compile-time “Forth” word definitions and programs.
* Compile-time primitives (D & C host code).

* D APIs for SQLite (RDBMS) and Curl (networking).

Example: Put data on stack

epop> 1 3 57 9

epop= .5

Dat stack:
index

82A163630
82A163580
82A165E70
82A165C60
82A16359A0

Example: Data stack as “program’”

Dat stack:
index address

829E05420
829E03630
829E03580

epop> EXEC . CR
E

=
epop=

Example: Sum data on stack

epop= 0DDS
epop= .5
Dat stack:
index address

82B1869A0
82B186840
82B186790
82B1866ED
82B186630

LA = o

3
1

epop= { + } GSC i- LREPEAT
epop= .5
Dat stack:

index address

828174420

Example: Define word to sum data

: SUMDAT { + } GSC 1- LREPEAT ;
= 0DDS

= SUMDAT . CR

Example: Define factorial as
map & reduce operations

epop> : MAP DUP IF DUP >R i- RECUR ELSE THEN :
epop> : REDUCE GRC IF R> * RECUR ELSE THEN ;
epop> : FACT MAP REDUCE ;

epop= 5 { FACT . } LE
120

Example Program: ASCII printout

(ascii.epop)
(print out ascii table)

: tab 9 EMIT ;
: hdr chr . tab dec . tab bin . tab tab oct . tab tab hex . CR ;
CR ;

: ascil row DUP © BASE . tab DUP 10 BASE . tab DUP 2 BASE . tab DUP & BASE . tab DUP 16 BASE tab .

hdr
64 { i+ ascii row DUP } 26 LREPEAT

About ASCII:
https://www.w3schools.com/charsets/ref _html_ascii.asp

https://www.w3schools.com/charsets/ref_html_ascii.asp

Example: Run the ASCII program

epop>
epop> ascii 1 RUN

chr dec bin

f 65 blepoeel
66 blepeale
67 bleeeall
68 bleealea
69 blepelel
78 blepolle
71 bleeelll
72 bleelees
73 blea1e81
74 bleplale
75 bleplell
76 bleplles
77 bleellel
78 blee1lle
79 bleellll
80 bleloees
81 bleleasl
82 bleleele
83 bl618611
84 blaleles
85 blelelel
86 blelelle
87 blelelll
88 ble116688
89 blalleel
90 blellele

oy mom

H
I
J
K
L

= =
= &

CcC=-unIo oo

-

Example Program: Fetch HTTP data

(dog-is-dog.epop)

CrAzYpAsSwOrD pssw !
SomeUser unam !
datamart.systemgoats.com/a-dog-is-a-dog.txt url !

url @
unam @
pssw @

HTTPGET

Example: Run HTTP Fetch

epop>

epop> dog-is-dog 1 RUN CR
A dog is A Dog

by T. S. Eliot

Now dogs pretend they like to fight;
They often bark, more seldom bite;
But yet a Dog is, on the whole,
What you would call a simple soul.
Of course I'm not including Pekes,
And such fantastic canine freaks.
The usual Dog about the Town

Is much inclined to play the clown
And far from showing too much pride
Is frequently undignified.

He's very easily taken in-

Just chuck him underneath the chin
Or slap his back or shake his paw,
And he will gambol and guffaw.

He's such an easy-going lout,

He'll answer any hail or shout.

Again I must remind you that
A Dog's a Dog - A CAT'S A CAT.

Example: See user defined words

—
(=N
=

-ONE
ONES
ZEROS
0DDS
EVENS
NULL
BS

CR
SPACE
TRUE
FALSE
1L

i-

ix.

=

bW
om e~
O~ @ =
- O @
(=N

@

@

oo

8D

SN ©

88 D EMI
D EMIT
B D EMIT
D EMIT

@

(¥}

ADD

SUBTRACT

MULTIPLY

D EQ

D GT

D LT
P DROP
D MULTIPLY
D MOVE
D MOVE 3 D MOVE
D PICK

2 D PICK 2 D PICK

SWAP 2 D PICK

SWAP 2 D PICK SUBTRACT ADD SWAP
ADD 0.8 D GT

IF @ D ELSE 1 D THEN

MULTIPLY 0.0 D GT

0.8 D GT SWAP .8 D GT ADD 1 D EQ
DUP ©.@ D LT IF -1 D MULTIPLY ELSE THEN
DUP MULTIPLY

EQ IF @ D ELSE 1 D THEN

PULLR DUP PUSHR

PULLR DROP

BLE ADD ELE GSC 1 D SUBTRACT LREPEAT

oo oooo

<

NIP
NEGATE
ROT
-ROT
OVER
DUP2
TucK
RUP

OR
NOT
AND
XOR
ABS
SQUARE
NEQ

VOO =@ We e

W

[

P LI L

RDROP
SUMDAT

EEEEEEEEEE S EE e B e s e R E E EEEE B EE =

Example Program: Run from CLI

--; epop RUN $EPOP HOME/APPS/hello.epop

Hello World!

Related Resources on the Internet

* https://forth-standard.org

* https://www.forth.com/starting-forth

* http://forth.org/compilers.htmi

* http://www.bradrodriguez.com/papers/movingl.htm

* https://en.wikibooks.org/wiki/Compiler _Construction

* https://users.ece.cmu.edu/~koopman/stack computers

* http://www.complang.tuwien.ac.at/forth/threaded-code.htm|
» https://compilers.iecc.com/crenshaw

e https://openfirmware.info/Bindings

https://forth-standard.org/
https://www.forth.com/starting-forth
http://forth.org/compilers.html
http://www.bradrodriguez.com/papers/moving1.htm
https://en.wikibooks.org/wiki/Compiler_Construction
https://users.ece.cmu.edu/~koopman/stack_computers
http://www.complang.tuwien.ac.at/forth/threaded-code.html
https://compilers.iecc.com/crenshaw
https://openfirmware.info/Bindings

Forth Systems

* Forth Systems: https://forth-standard.org/systems

e Compilers written in Forth:
* https://bellard.org/tcc/
* https://arduino-forth.com/article/FORTH_metacompilation_intro
* https://git.sr.ht/~vdupras/duskos/tree/master/item/fs/comp/c
e https://www.mpeforth.com/arena/C2ForthKit.120.zip
e https://github.com/pzembrod/cc64

https://forth-standard.org/systems
https://bellard.org/tcc/
https://arduino-forth.com/article/FORTH_metacompilation_intro
https://git.sr.ht/~vdupras/duskos/tree/master/item/fs/comp/c
https://www.mpeforth.com/arena/C2ForthKit.120.zip
https://github.com/pzembrod/cc64

https://systemgoats.com/epop.html

https://systemgoats.com/epop.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

