
  

Implementing a Forth
● Forth Background.
● Why a Forth?
● Stack Machines.
● Implementation Concepts.
● Execution & Threading.
● Stacks Operations & Postfix.
● epop Overview & Examples.
● Resources.
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Disclaimer

Programming Languages may have standards

(IEEE POSIX, ANSI Forth, ANSI C, ... )

Compiler implementations have principles. 

(No rigid rules.)



  

Forth History

Developed by Charles Moore in the late 1960’s.
● A student of John McCarthy at MIT in the 1950s.
● Possibly influenced by McCarthy’s LISP programming 

ideas. 
● Forth was “functional” long before there was 

Functional Programming.



  

Why Forth?

● The efficiencies of a stack machine.
● Can be self-hosted and be its own OS.
● A compiler-implementation paradigm.
● More than a Programming Language.



  

Why Forth, cont’
● A problem solving language:

● Compact / concise expressions.
● Self-documenting syntax.
● Factoring words:

● Identify general problem / solution.
● Identify most basic component words.
● Inductively compose solution of component words.



  

Host vs Guest System

● Hosted: Host language defines Forth dictionary.

● Self-hosted: Guest system language defines 
Forth dictionary (minimal machine level / 
assembly functions).



  

Minimal Host Components
● Push function: for data stack   
● Pop function: for data stack
● Data Stack
● Program Stack



  

Stack Machines
● Stack: Dedicated registers or dedicated area of memory. 
● Stack data is Last-In-First-Out (LIFO).
● Program Stack: instruction sequence.
● Dictionary: A parallel in-memory structure/table.
● Stack Counter: element count; size-of.
● Stack Pointer (top of the Program Stack):

● Memory address of next instruction.
● May be indexed by Program Counter.  

● Push data (to top of Data Stack).
● Pop data (from top of Data Stack).  
● Return Stack: 

● Addresses of functions that call other functions (return address) for continuing program sequence.
● And/or auxiliary data stack for the current operation. 



  

Forth Execution
● Compile-time generation of host language 
functions. 

● Compile-time generation of guest language 
functions. (Like Forth’s CREATE DOES> sequence)

● Run-time Virtual Machine: loop -> word parse / 
tokenize -> stack(s) -> exec



  

The Virtual Machine Loop

●  Read text input -- via user interface or file i/o.
●  Interpret / parse -- one or two passes with look-ahead tokenizer. 
●  Generate high level program (abstract word tree). 
●  Recursively flatten tree to low level program stack.
●  Evaluate program stack.
●  Repeat



  

Indirect Threaded Code
● Portable: No predefined function addresses (not direct). 
● More low-level jumps than direct threaded code. 
● Replace words (abstract functions) with:

● Primitive addresses 
● Intermediate opcode
● Intermediate abstract object (token or subroutine threading)  

● Dispatch the replacements to program stack.



  

Word Dispatch: Vectored Execution
● Replace input vector of abstract words with by executable objects.
● Flatten abstract word tree into executable program stack (indirect threading).

● Use recursive descent operations with 
● Switch statement (switch threading).

● Identify next word (opcode, address,...).
● IF condition is 1 “immediate” then exec.
● ELSE push word to program stack.

● Advance stack pointer/counter. 
● Execute the program stack.



  

Stack Operations: Postfix
● Efficient for memory and CPU.
● No rules of precedence.

● No need of ( ) parentheses, unlike infix notation.

● Linear processing from left-to-right; top-to-bottom.
● Think of assembly’s prefixed notation, in reverse. 
● Ex:  2 1 +  -->  3



 

Three Separate Stacks (before operations).

Operand Operator Return
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Three Separate Stacks (after one operation).

Operand Operator Return
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Three Separate Stacks (after two operations).

Operand Operator Return
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A Combined Stack (before & after one operation).
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epop overview
● Most operations are postfix and stack oriented. 
● Program stack: Linear linked-list.
● Three data stacks: Circular linked-lists (for memory management).
● Data types: numeric, string, table and XT.  

● Use tables for “big data.”
● XTs (execution tokens) can be treated as data.

● Run-time user defined words (in REPL).
● Compile-time “Forth” word definitions and programs.
● Compile-time primitives (D & C host code).

● D APIs for SQLite (RDBMS) and Curl (networking).



  

Example: Put data on stack



  

Example: Data stack as “program”



  

Example: Sum data on stack



  

Example: Define word to sum data



  

Example: Define factorial as 
map & reduce operations



  

Example Program: ASCII printout

About ASCII: 
https://www.w3schools.com/charsets/ref_html_ascii.asp  

https://www.w3schools.com/charsets/ref_html_ascii.asp


  

Example: Run the ASCII program



  

Example Program: Fetch HTTP data



  

Example: Run HTTP Fetch



  

Example: See user defined words



  

Example Program: Run from CLI



  

Related Resources on the Internet

● https://forth-standard.org
● https://www.forth.com/starting-forth
● http://forth.org/compilers.html 
● http://www.bradrodriguez.com/papers/moving1.htm 
● https://en.wikibooks.org/wiki/Compiler_Construction
● https://users.ece.cmu.edu/~koopman/stack_computers 
● http://www.complang.tuwien.ac.at/forth/threaded-code.html
● https://compilers.iecc.com/crenshaw 
● https://openfirmware.info/Bindings 

https://forth-standard.org/
https://www.forth.com/starting-forth
http://forth.org/compilers.html
http://www.bradrodriguez.com/papers/moving1.htm
https://en.wikibooks.org/wiki/Compiler_Construction
https://users.ece.cmu.edu/~koopman/stack_computers
http://www.complang.tuwien.ac.at/forth/threaded-code.html
https://compilers.iecc.com/crenshaw
https://openfirmware.info/Bindings


  

Forth Systems
● Forth Systems: https://forth-standard.org/systems
● Compilers written in Forth: 

● https://bellard.org/tcc/
● https://arduino-forth.com/article/FORTH_metacompilation_intro
● https://git.sr.ht/~vdupras/duskos/tree/master/item/fs/comp/c
● https://www.mpeforth.com/arena/C2ForthKit.120.zip 
● https://github.com/pzembrod/cc64

https://forth-standard.org/systems
https://bellard.org/tcc/
https://arduino-forth.com/article/FORTH_metacompilation_intro
https://git.sr.ht/~vdupras/duskos/tree/master/item/fs/comp/c
https://www.mpeforth.com/arena/C2ForthKit.120.zip
https://github.com/pzembrod/cc64


  

https://systemgoats.com/epop.html

 

https://systemgoats.com/epop.html
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