
  

Implementing a Forth
● Forth Background.
● Why a Forth?
● Stack Machines.
● Implementation Concepts.
● Execution & Threading.
● Stacks Operations & Postfix.
● epop Overview & Examples.
● Resources.



  

Jack.Pope@ieee.org
● Investment data science infrastructure on UNIX, 
since ancient times. 

● Chairman, Twin Cities IEEE Computer Society.
● Computer Science / Data Science, Minnesota 
State Colleges & Universities. 

● Developer of epop, a Forth inspired 
programming environment.



  

Disclaimer

Programming Languages may have standards

(IEEE POSIX, ANSI Forth, ANSI C, ... )

Compiler implementations have principles. 

(No rigid rules.)



  

Forth History

Developed by Charles Moore in the late 1960’s.
● A student of John McCarthy at MIT in the 1950s.
● Possibly influenced by McCarthy’s LISP programming 

ideas. 
● Forth was “functional” long before there was 

Functional Programming.



  

Why Forth?

● The efficiencies of a stack machine.
● Can be self-hosted and be its own OS.
● A compiler-implementation paradigm.
● More than a Programming Language.



  

Why Forth, cont’
● A problem solving language:

● Compact / concise expressions.
● Self-documenting syntax.
● Factoring words:

● Identify general problem / solution.
● Identify most basic component words.
● Inductively compose solution of component words.



  

Host vs Guest System

● Hosted: Host language defines Forth dictionary.

● Self-hosted: Guest system language defines 
Forth dictionary (minimal machine level / 
assembly functions).



  

Minimal Host Components
● Push function: for data stack   
● Pop function: for data stack
● Data Stack
● Program Stack



  

Stack Machines
● Stack: Dedicated registers or dedicated area of memory. 
● Stack data is Last-In-First-Out (LIFO).
● Program Stack: instruction sequence.
● Dictionary: A parallel in-memory structure/table.
● Stack Counter: element count; size-of.
● Stack Pointer (top of the Program Stack):

● Memory address of next instruction.
● May be indexed by Program Counter.  

● Push data (to top of Data Stack).
● Pop data (from top of Data Stack).  
● Return Stack: 

● Addresses of functions that call other functions (return address) for continuing program sequence.
● And/or auxiliary data stack for the current operation. 



  

Forth Execution
● Compile-time generation of host language 
functions. 

● Compile-time generation of guest language 
functions. (Like Forth’s CREATE DOES> sequence)

● Run-time Virtual Machine: loop -> word parse / 
tokenize -> stack(s) -> exec



  

The Virtual Machine Loop

●  Read text input -- via user interface or file i/o.
●  Interpret / parse -- one or two passes with look-ahead tokenizer. 
●  Generate high level program (abstract word tree). 
●  Recursively flatten tree to low level program stack.
●  Evaluate program stack.
●  Repeat



  

Indirect Threaded Code
● Portable: No predefined function addresses (not direct). 
● More low-level jumps than direct threaded code. 
● Replace words (abstract functions) with:

● Primitive addresses 
● Intermediate opcode
● Intermediate abstract object (token or subroutine threading)  

● Dispatch the replacements to program stack.



  

Word Dispatch: Vectored Execution
● Replace input vector of abstract words with by executable objects.
● Flatten abstract word tree into executable program stack (indirect threading).

● Use recursive descent operations with 
● Switch statement (switch threading).

● Identify next word (opcode, address,...).
● IF condition is 1 “immediate” then exec.
● ELSE push word to program stack.

● Advance stack pointer/counter. 
● Execute the program stack.



  

Stack Operations: Postfix
● Efficient for memory and CPU.
● No rules of precedence.

● No need of ( ) parentheses, unlike infix notation.

● Linear processing from left-to-right; top-to-bottom.
● Think of assembly’s prefixed notation, in reverse. 
● Ex:  2 1 +  -->  3



 

Three Separate Stacks (before operations).

Operand Operator Return

4 x

2

3

1

+

Separate Stacks

Copyright (C) Jack Pope 2023



  

Three Separate Stacks (after one operation).

Operand Operator Return

3 +

1

8

Separate Stacks

Copyright (C) Jack Pope 2023



  

Three Separate Stacks (after two operations).

Operand Operator Return

4

8

Separate Stacks

Copyright (C) Jack Pope 2023



  

A Combined Stack (before & after one operation).

Before After

+ 5

2

3

7

7

Combined Stacks

Copyright (C) Jack Pope 2023



  

epop overview
● Most operations are postfix and stack oriented. 
● Program stack: Linear linked-list.
● Three data stacks: Circular linked-lists (for memory management).
● Data types: numeric, string, table and XT.  

● Use tables for “big data.”
● XTs (execution tokens) can be treated as data.

● Run-time user defined words (in REPL).
● Compile-time “Forth” word definitions and programs.
● Compile-time primitives (D & C host code).

● D APIs for SQLite (RDBMS) and Curl (networking).



  

Example: Put data on stack



  

Example: Data stack as “program”



  

Example: Sum data on stack



  

Example: Define word to sum data



  

Example: Define factorial as 
map & reduce operations



  

Example Program: ASCII printout

About ASCII: 
https://www.w3schools.com/charsets/ref_html_ascii.asp  

https://www.w3schools.com/charsets/ref_html_ascii.asp


  

Example: Run the ASCII program



  

Example Program: Fetch HTTP data



  

Example: Run HTTP Fetch



  

Example: See user defined words



  

Example Program: Run from CLI



  

Related Resources on the Internet

● https://forth-standard.org
● https://www.forth.com/starting-forth
● http://forth.org/compilers.html 
● http://www.bradrodriguez.com/papers/moving1.htm 
● https://en.wikibooks.org/wiki/Compiler_Construction
● https://users.ece.cmu.edu/~koopman/stack_computers 
● http://www.complang.tuwien.ac.at/forth/threaded-code.html
● https://compilers.iecc.com/crenshaw 
● https://openfirmware.info/Bindings 

https://forth-standard.org/
https://www.forth.com/starting-forth
http://forth.org/compilers.html
http://www.bradrodriguez.com/papers/moving1.htm
https://en.wikibooks.org/wiki/Compiler_Construction
https://users.ece.cmu.edu/~koopman/stack_computers
http://www.complang.tuwien.ac.at/forth/threaded-code.html
https://compilers.iecc.com/crenshaw
https://openfirmware.info/Bindings


  

Forth Systems
● Forth Systems: https://forth-standard.org/systems
● Compilers written in Forth: 

● https://bellard.org/tcc/
● https://arduino-forth.com/article/FORTH_metacompilation_intro
● https://git.sr.ht/~vdupras/duskos/tree/master/item/fs/comp/c
● https://www.mpeforth.com/arena/C2ForthKit.120.zip 
● https://github.com/pzembrod/cc64

https://forth-standard.org/systems
https://bellard.org/tcc/
https://arduino-forth.com/article/FORTH_metacompilation_intro
https://git.sr.ht/~vdupras/duskos/tree/master/item/fs/comp/c
https://www.mpeforth.com/arena/C2ForthKit.120.zip
https://github.com/pzembrod/cc64


  

https://systemgoats.com/epop.html

 

https://systemgoats.com/epop.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

